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The quantum logic approach to axiomatic quantum mechanics is used to 
analyze the conceptual foundations of the traditional quantum theory. The 
universal quantum of action h > 0 is incorporated into the theory by introducing 
the uncertainty principle, the complementarity principle, and the superposition 
principle into the framework. A characterization of those quantum logics (L, S) 
which may provide quantum descriptions is then given. 

1. I N T R O D U C T I O N  

Either h > 0 or h = 0, exclusively. Physical actions cannot have nega- 
tive values. 

The physical reason for the quantum theoretical description of nature 
is that Planck's constant h differs from zeroJ I t  took about  thirty years 
after Planck's fundamental  discovery to successfully integrate the concept 
of quantum into physics, and it was finally done with the elegant Hilbert 
space formulation of quantum mechanics due to von Neumann  (1932). 
The consistency of the theory with the existence of the universal quantum 
of action h was guaranteed by the fact that the formalism was automati-  
cally in harmony with the three fundamental  quantum principles, namely, 
with the uncertainty principle, with the complementari ty principle, and 
with the superposition principle. The root of the theory, the h, received 
here, however, a fairly hidden role, manifesting itself most strikingly in the 
fundamental  "exchange relation" Q P - P Q =  ih/2~r but also in the above- 
mentioned three quantum principles. 

lit has been found empirically that h=6.6256• 10 - ~  J s. 
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Since the fundamental work of Mackey (1963) many novel approaches 
to axiomatic quantum mechanics have been developed--each of them 
deepening our insight on quantum theory. 2 In particular, the operational 
approach (Davies and Lewis, 1970; Edwards, 1970) and the convex scheme 
(Mielnik, 1969, 1974) have proved to be flexible enough to provide us with 
physically interesting generalizations of the standard quantum mechanics 
(Mielnik, 1974; Davies, 1976; see also Bugajski, 1979). In spite of the 
shadows these two approaches have cast on the old quantum logic ap- 
proach (Mielnik, 1974; Davies, 1976; Bugajski, 1979), this approach ap- 
pears to provide us with a suitable framework to analyze conceptual 
foundations of the quantum theory. We thus accept the quantum logic 
approach here. 

It is rather generally agreed that the minimal mathematical structure 
of any probabilistic physical theory is properly reflected in a couple (L, S), 
called a quantum logic, where L carries as a natural structure that of an 
orthomodular o-orthocomplete poset and S is an order-determining set of 
probability measures on L. In particular,-this general setting provides us 
with the common structure of the classical phase space theory and the 
quantum Hilbert space theory. 

Our concern will be to find out, and to characterize, those quantum 
logics (L, S) which are of quantum nature. In order to reach such quantum 
logics from the general frame, which contains both the classical and the 
quantum case, we have to introduce, either explicitly or implicitly, the 
universal quantum of action into the theory. 

The step from the general (L, S) setting to quantum theory is not of 
logical but of empirical character. This step consists in introducing the 
empirical fact of the existence of the universal quantum of action h into 
the prestructure (L,S), i.e., in quantizing the quantum logic (L,S). We 
think that quantization does not mean, as is usually taught (see, e.g., C. A. 
Taylor, 1973), introducing discreteness in the spectra of some observables 
(which results from boundary conditions--either classical or quantal) but 
rather introducing the quantum of action h into the theory. Actually, the 
quantization in our sense has a consequence of introducing noncompatibil- 
ity of certain observables, but not the discreteness in their spectra. 

Evidently, there are many ways to quantize the (L, S) theory. The first 
step in this direction was taken by Mackey (1963) with his famous Hilbert 
space axiom (Mackey's seventh axiom): L is isomorphic to the projection 
lattice P(I-I) of a complex separable infinite-dimensional Hilbert space H. 
The second consists of the so-called representation theorems aimed at 
deriving the above Mackey axiom from a set of "more fundamental" 

2For a review of themain approaches we refer to Gudder (1977). 
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assumptions, the most famous of such works being due to Piron (1964). 
"llaough there are many novel ways to introduce the Piron structure for L, 
it is to be recognized that in every case (known to us) the fundamental step 
seems to lack "physical clarity," being only motivated with the acknowl- 
edgement of the final goal) Moreover, the crucial branching point between 
classical theory and quantum theory is usually deeply hidden in the very 
difficult task of finding physical (operational) motivations for those prop- 
erties of L, like lattice structure or atomicity or covering property or 
semimodularity, which are essential for the representation theorems, but 
which do not distinguish the two theories. The introduction of the quan- 
tum of action h into the theory is still rather implicit, actually being 
contained in the claim stressed already by Mackey in his above-cited 
classic treatise: a quantum theoretic L possesses noncompatible proposi- 
tions, i.e., in the quantum case L is non-Boolean. Here we shall propose a 
more explicit method of quantization. 

The quantum principle, the existence of the universal quantum of 
action h, seems not to provide in itself any quantitative basis for the 
building up of quantum mechanics from the (L, S) setting. However, the 
quantum principle appears itself most strikingly in the inevitable interac- 
tion between the object and the instrument during the process of measure- 
ment as well as in the fundamental wave-particle duality. Careful 
investigations of these "quantum anomalies" led Heisenberg (1927), Bohr 
(1928), and Dirac (1930) to formulate the uncertainty principle, the com- 
plementarity principle, and the superposition principle to account for those 
peculiar features of the experimental situations resulting from the evidence 
of the quantum. We believe that these three principles comprise the main 
manifestation of the existence of the universal quantum of action h. 

Though we leave it open whether the above-mentioned three princi- 
ples jointly exhaust the quantum principle we propose that the quantization 
of the (L,S) theory consists of formulating the uncertainty principle, the 
complementari(y principle, and the superposition principle in that general 
frame and picking out those quantum logics (L, S) which satisfy the principles. 

The suggested method of quantization leads also to a natural classifi- 
cation of quantum logics, which, we think, adds to our understanding of 
the conceptual foundations of the quantum theory. 

In order to reach a more satisfactory characterization of the quantum 
logics providing quantum descriptions one should also consider the for- 
realization of measurements and the questions of dynamics within the 

3By the Piton structure of L we mean the structure of a complete atomic orthocomplemented 
orthomodular lattice with covering property. For a detailed account of the different ap- 
proaches to produce this structure for L we refer to Beltrametti and CassineUi (1976, 1979). 
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framework. However, these questions lie outside the scope of the present 
paper. 4 

2. A QUANTUM L O G I C - - T H E  GENERAL FRAME 

In order to fix our general framework we accept the quantum logic 
approach to nonrelativistic axiomatic quantum theory. In this approach it 
is assumed that the minimal mathematical structure of any nonrelativistic 
probabilistic (irreducibly or otherwise) physical theory is properly reflected 
in a couple (L, S), where L, the set of allpropositions on the physical system 
concerned, carries as a natural structure that of an orthomodular o- 
orthocomplete partially ordered set and S is an order-determining or full 
set of probability measures, states, on L. Such a prestructure or skeleton 
(L, S) is called a quantum logic. The family of all quantum logics is denoted 
by s 

In this approach the observables of the considered physical system are 
described as L-valued measures on (R,B(R)) ,  where B(R)  denotes the set 
of all Borel subsets of the real line R. The probability measure 

a oA : B(R)---~[0, 1 ], E--->a(A(E)) 

is interpreted as the probability distribution of the observable A in the 
state a. Moreover, the set of all observables O of the physical system 
concerned is surjective: for each a in L there is an A in O and an E in 
B(R)  such that a=A(E). 

For a general exposition of this approach, as well as for the standard 
definitions of the concepts like atom, pure state, sp(A) (the spectrum of the 
observable A), Vat(A, a) (the variance of A in the state a) appearing in the 
text, the reader is referred to Mackey (1963), Maczynski (1967, 1973), 
Varadarajan (1968), Gudder  (1970), and Beltrametti and Cassinelli (1976). 

3. E d - - T H E  CLASSICAL CASE 

The classical Hamiltonian description of a physical system with n 
degrees of freedom is carried out in the phase space M (2n-dimensional real 
Euclidean space) whose Borel structure B(M) describes in a natural way 
the set of all propositions on the system. We denote this set as L. The 

4A formalization of the ideal, first-kind measurements has already been successfully done 
within the quantum logic approach (Pool, 1968; Beltrametti and Cassinelli, 1976, 1977; 
Cassinelli and Beltrametti, 1975). The question of dynamics is not of great relevance here 
because we are dealing with nonrelativistic theory, in which the questions of dynamics and 
statistics can be considered independently. 
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dynamic variables of the system are expressed as real-valued Borel func- 
tions on M. The o homomorphisms induced by the dynamic variables are 
called the observables of the physical system, the set of all observables 
(A :B(R)--->L, A o homomorphism} being denoted as O. The points of M 
describe the states of the system. The points of M can be identified with 
the unit measures on L. To allow also nontrivial probability measures on L 
as states of the system (mixed states) we generalize thus: a state of the 
physical system is a probability measure on L. We denote the set of all 
such states {a :L--->[0, 1], a probability measure) as S. The probability 
measure a o A :B(R)--->L gives the probability distribution of the observa- 
ble A in the state a. 

The classical Hamiltonian description of a physical system with n 
degrees of freedom is thus based on a quantum logic (L, S) with L as the 
Borel structure of the 2n-dimensional phase space M and S as the set of all 
probability measures on L. We define 

Ee 1 --_ ((L, S) E E [L = B(M), M is a phase space, S is the set of 
all probability measures on B(M)} (1) 

In the classical case, i.e., when ( L , S ) ~ c l  , L is Boolean, and the set P 
of all pure states (unit measures) on L is sufficient, satisfying thus the 
principle of plenitude: for each a in L, av~0, there is a pure statep in P such 
that p(a)= 1. Moreover, any a in S can uniquely be expressed as a 
(countable or otherwise) mixture of pure states in S. 

4. ~sP ~ T H E  S U P E R P O S I T I O N  PRINCIPLE SP 

In the quantum logic approach two natural generalizations of Dirac's 
notion of superposition, and thus of the superposition principle, arise: 5 the 
one referring to the atoms of L, the other referring to the pure states of S. 
Thus in order to formulate this notion and to state the principle in the 
(L, S) setting we have to assume that L contains atoms or S contains pure 
states. 

5In Dirac's approach the mathematical formulation of the superposition principle led to the 
requirement of the linearity of the state space (Dirac, 1930). For a recent account of some 
experiments supporting the supcrposition principle we refer to Gerjuoy (1973). Of course the 
validity of the superposition principle as a law of nature is restricted both with the discovery 
of superselcction rules (Wick et al., 1952) and with the evidence calling for nonlinear 
generalizations of quantum mechanics (see, e.g., Mieluik, 1974; Haag and Bannier, 1978; 
Bugajski, 1979). 
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The following two independent notions of superposition are fre- 
quently discussed: 6 

A pure state a is a superposition of  pure states a I and a 2 iff a l ( a ) =  
a 2 ( a ) = 0  implies a ( a ) =  0 for every a in L. 

An a tom a is a superposition of  atoms a I and a 2 iff a ~< b for every b in 
L such that b i> a I and b > a 2. 

The resulting two forms of the superposition principle can be put 
forward as follows: 

Definition 1. The quantum logic (L, S) satisfies the state-theoretic su- 
perposition principle if for any two distinct pure states cq and a 2 there is a 
third pure state o~ 3, distinct f rom a~ and a 2, which is their superposition. 

Definition 2. T h e  quan tum logic (L,S) satisfies the lattice-theoretic 
superpositionprinciple if for any two distinct atoms a I and a 2 there is a third 
a tom a3, distinct f rom a I and a 2, which is their superposition. 

We proceed by defining 

~SP = ((L, S) E ~ I(L, S) satisfies either the lattice-theoretic or 
the state-theoretic superposition principle} (2) 

We do not lack quantum logics which satisfy the superposition princi- 
ple. Moreover, it is most  evident that any (L, S) in Eel can satisfy neither 
the lattice- nor the state-theoretic formulation of this principle. Thus we 
have the following theorem. 

Theorem 1. ~Sp =)/=~. ~el [")~SP ~"~'~" 

According to Jauch (1968) the essential feature of quantum mechanics 
is the existence of noncompatible  propositions, which means that the 
structure of a quantum proposit ion system is non-Boolean. CAving a 
lattice-theoretic formulation for  the superposition principle Jauch shows 
that a lattice satisfying this principle cannot be Boolean, hence the super- 
position principle implies the essential feature of quantum mechanics. 
According to Jauch this shows that the superposition principle is not a new 
axiom of quantum mechanics but it is merely a consequence of the 
non-Boolean structure of the proposition system. We, however, advocate 
the converse view. The non-Boolean structure of L is not the most  
important  manifestation of the quantum nature of the system considered. 

6For details and for original references see Bugajski and Lahti (1980). 
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The non-Boolean structure of L is an important consequence of, e.g., the 
lattice-theoretic formulation of the superposition principle. But, as we shall 
see, there are quantizations of the prestructure (L, S) which do not lead to 
non-Boolean L. Moreover, we have abundance of 0L, S) systems with 
non-Boolean L which seem to lack any relevance to the present physics. 
[See Mielnik (1968) for similar views.] 

5. ~UP--THE UNCERTAINTY PRINCIPLE UP 

In the Hilbert space quantum theory the uncertainty principle, the 
first of the two principles leading to the Copenhagen clarification of the 
conceptual foundations of the quantum theory, appears itself most strik- 
ingly in the uncertainty relation for the canonical position and momentum 
observables Q and P: 

Var(O, qO.Var(P,q~)>(h/4~r) 2 (ep~dom(Qe)Ndom(PQ)) 

The uncertainty principle is thought to provide the consistency of the 
essentially probabilisfic state description of quantum mechanics. It is a 
characteristic feature of quantum mechanics that only such states of a 
physical system can be prepared for which the product of the "uncertain- 
ties" (i.e., standard deviatiations) of any pair of conjugate variables Q and 
P has a lower bound given by h/47r. This is what Heisenberg advocated as 
a direct intuitive interpretation of the fundamental "exchange relation." 7 

In the quantum logic approach we lack any analogy of the Schwarz 
inequality which led to the above uncertainty relation. However, it appears 
to us that the very idea of the uncertainty principle expressed above can 
easily be translated to the quantum logic setting, too. The following form 
for this principle in quatum logic seems to be acceptable (Lahti, 1979a, 
1980). 

Definition 3. The quantum logic (L, S) satisfies the uncertainty princi- 
ple if there exist at least two observables A and B in O and a positive 
number h, such that for every state a in S, for which the variances of A 
and B are well defined, the inequality 

Var(A, a). Var(B, a) >/h 

holds. 

We define 

Eul, = ( (L, S) E ~l(L, S) satisfies the uncertainty principle } (3) 

7For a historieoeritieal analysis of this subject matter refer to Jammer (1974). 
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Again, we do not lack quantum logics satisfying the uncertainty 
principle. Moreover, it is clear that an (L,S) in Eel cannot satisfy the 
uncertainty principle. Thus we have the following theorem. 

Theorem 2. ~Up =fl=~. ~cl NEUP =~- 

In addition to the above result it is known that whenever the state 
system S satisfies the principle of plenitude the observables A and B 
satisfying the UP are unbounded and noncompatible (Lahti, 1979a, 1980). 
Thus for any (L,S) in ~uP, with sufficient S ,L  is non-Boolean. 

6. E c p - - T H E  COMPLEMENTARITY PRINCIPLE CP 

The second of the two principles which led to the Copenhagen 
solution of the interpretation problem of the quantum theory is the 
complementarity principle, by Bohr. The standard Hilbert space quantum 
theory is built up in such a way that it is automatically in harmony with 
the superposition principle and with the uncertainty principle, but also 
with the complementarity principle, s Really, the Bohrian view that position 
and momentum Q and P are complementary observables is properly 
reflected in the Hilbert space result 

PQ(E)APe(F)=O for any bounded E and F i n  B(R)  

which results from the Fourier-Plancherel  equivalence of Q and P. Here 
PQ and pe denote the spectral measures of Q and P, respectively. 

We proceed by abstracting the above Hilbert space expression of 
complementarity of certain observables to the quantum logic frame. 

Definition 4. Observables A and B are complementary if for any 
bounded Borel sets E and F such that EN sp(A)C sp(A) and FA s p ( B ) c  
sp(B), the lattice meet A(E)AB(F)  exists in �9 and equals the lea~t 
element 6f L, 0. 

Definition 5. The quantum logic (L, S) satisfies the complementarity 
principle if there exist in O at least two nonconstant complementary 
observables. 

SBoh_r's viewpoint of complementarity is not very compact, and it does not contain any clear 
definition. However, the most obvious fact is that "complementarity is a binary relationship: 
some A is complementary to some B" (Scheibe, 1973; see also Jammer, 1974, and Lahti, 
1979a). We follow Bohr's important paper (Bohr, 1935) formulating complementarity as a 
binary relationship on the set of all observables O. Intuitively, we say that observables A and 
B are complementary if the experimental arrangements which permit their unambiguous 
definitions are mutually exclusive. 
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We define 

Ecv = { (L, S) E E I (L, S) satisfies the complementarity principle) (4) 

Again, we do not lack quantum logics satisfying the complementarity 
principle. Moreover, it is evident that an (L,S) in Eel cannot satisfy the 
complementarity principle. Thus we have the following theorem. 

Theorem 3. Ece :P ~ .  ~1 fq ~ce = f~. 

In fact, in (Lahti, 1979a, 1980) it is shown that nonconstant comple- 
mentary observables are noncompatible, which means that for any (L, S) in 
Ece L is non-Boolean. 

In his papers (1963, 1969) Finkelstein also stressed the foundational 
status of complementarity in quantum theory, and gave a formulation for 
this notion in the quantum logic scheme. According to Finkelstein (1963), 
two propositions (actually atoms) a and b are complementary if 

a ~ ( a A b ) V ( a A b  • ) (5) 

One immediately realizes that our CP implies the existence of complemen- 
tary propositions in Finkelstein's sense, but that the two notions are not 
equivalent. Really, our CP implies the existence of such propositions a and 
b in L for which a A b = 0  but ac~b • On the other hand, L(R 3) (see 
Section 9.1) possesses complementary propositions in Finkelstein's sense, 
but it does not admit any complementary observables. 

As (5) leads to a nondistributive L, Finkelstein emphasized com- 
plementarity as an instance of nondistributivity. More fundamental in 
Finkelstein's approach is coherence: L is coherent if for any pair of 
disjoint atoms a and b in L, there is a third atom c in L, disjoint from a and 
b, such that 

a V b  = b V c  = cVa  (6) 

Such a c he calls a coherent superposition of a and b, a notion which 
agrees with Jauch's notion of superposition (see Jauch 1968). Thus in 
Finkelstein's scheme coherence (i.e., superposition) implies complementar- 
ity. Finkelstein ended with his formulations in discussing the "photon 
polarization" or the "spin-I /2 particle in a Stern-Gerlach apparatus" 
lattices (see Section 9.3). These are examples in which the notions of 
coherence and complementarity are essentially the same. We note that in 
those examples also our notions of superposition and complementarity 
coincide, but we think that this coincidence is only accidental-- being due 
to the specific nature of the examples considered. 
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7. D I G R E S S I O N ~  COMPLEMENTARI'IT BREAKS 
MODULARITY? 

According to Jauch (1968) and Finkelstein (1963, 1969), coherence is 
the essential quantum feature. Coherence of L implies the nondistributivity 
of L. The superposition principle and complementarity, which are char- 
acteristic features of quantum mechanics, are said to be special instances 
of the nondistributivity of L. Moreover, if the length of the unit element of 
L, say n, is greater than 2, then a coherent L is essentially isomorphic to 
the lattice L(V(n)) of all vector subspaces of an n-dimensional vector space 
V(n). [See Finkelstein (1963) and Jauch (1968).] This is essentially the 
content of the celebrated Piron representation theorem (Piron, 1964).) So 
let us consider briefly the vector space models of L. 

If L----L(V(1)), then L is distributive and does not have (nontrivial) 
coherence. If L~L(V(n)),  n 1> 2, then L has coherence, and is thus nondis- 
tributive, actually modular whenever n < o0. 

In the case L~L(V(2)), both SP and CP hold. Actually, in this case 
the notions of superposition and complementarity coincide. In the case 
L----L(V(3)) we still have superpositions, but we do not have any comple- 
mentary observables. In the case L~-L(V(n)), with n ~ 4, SP and CP hold 
again, but the two notions do not coincide any more. 

We call an observable A : B(R)---~L maximal if whenever a EA(B(R)) 
and p ~< a is an atom, then also p ~A(B(R)). One immediately recognizes 
that the existence of maximal complementary observables is inconsistent 
with the finite-dimensional (n ~ 3) vector space models for L. We note that 
position and momentum are the most important examples of complemen- 
tary observables. They are maximal. Thus it appears to us that com- 
plementarity is responsible for the relaxation of the modularity of L. 

To conclude the above findings, we note that the (L,S) theory 
supplemented with coherence is quantal, leading to a vector space model 
for L. When the (L, S) theory is supplemented both with coherence and 
with maximal complementarity, we end with infinite-dimensional vector 
space models for L. Thus coherence leads to the break of distributivity, 
and maximal complementarity leads to the break of modularity. 

8. l~wm AND ~vN 

The three fundamental principles of the quantum theory are, as 
agreed, the superposition principle (due to Dirac), the uncertainty principle 
(due to Heisenberg), and the complementarity principle (due to Bohr). In 
the preceding sections it was shown that the natural formulations of these 
principles in the quantum logic setting are of quantum nature, each of 
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them excluding the classical description. In the next chapter we shall 
discuss some familiar quantum logics which, among other things, indicate 
the mutual independence of the principles. 9 

Owing to the foundational status of these principles in the quantum 
theory we suggest the following: A necessary condition for a given quantum 
logic (L, S) to provide a quantum description of any physical system is that 
(L, S) satisfies either the superposition principle or the uncertainty princi- 
ple or the complementarity principle. In other words, quantum logics (L, S) 
in 

~qu m ESPvUPVC v = ~SP U ~UP U J~cP (7) 

and only those, can provide quantum descriptions. 
Among the most interesting subclasses of Equ are the following two. 

The Dirac-Heisenberg-Bohr quantum logics, i.e., those quantum logics 
which satisfy all the three quantum principles: 

EDHB = ~SPAUPACP = Esp f') EuP ~ Ecv (8) 

and the von Neumann quantum logics or the Hilbertian quantum logics: 

EvN = ((L, S) E El(L, S) is a Hilbertian quantum logic}. (9) 

By a Hilbertian quantum logic (L, S) we mean a quantum logic which gives 
us the standard Hilbert space quantum theory. 

The relevance of the distinction between (8) and (9) lies in the fact 
that (see Bugajski and Lahti, 1980) any Hilbertian quantum logic is a 
Dirac-Heisenberg-Bohr quantum logic, but not conversely. 

9. SOME QUANTUM LOGICSmEXAMPLES 

Next we shall study some frequently appearing quantum logics which 
on the one hand confirm some of the above statements and on the other 
hand give rise to further considerations. 

9.1. The Quantum Logic (L(R3),S). Consider the quantum logic 
(L(R3), S) with L(R 3) as the lattice of all subspaces of the three-dimensional 
real Euclidean space R 3, and with S as the set of all Gleason states on 
L(R3). L(R 3) is a lattice containing atoms, atoms being one-dimensional 
subspaces of R 3. According to Gleason (1957) each state on L(R 3) is either 

9This matter is discussed in more detail in (Lahti, 1979b). 
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a pure state (induced by a unit vector of R 3) or a mixture of pure states in 
S. Moreover, the pure states on L(R 3) are in natural one-to-one correspon- 
dence with the atoms of L(R3). 

SP. One immediately recognizes that (L(R3),S) satisfies both the 
lattice-theoretic and the state-theoretic superposition principle. Moreover, 
in this case the two notions of superposition are essentially the same. 

CP. Let A and B be two nonconstant observables, Le., o homomor- 
phisms B ( R ) ~ L ( R  3) with nontrivial ranges. This means that both the 
ranges A(B(R)) and B(B(R))  contain two-dimensional subspaces of R 3. 
The intersection of any two-dimensional subspaces of R 3 is, at least, 
one-dimensional subspace. Thus A and B cannot be complementary, i.e., 
(L(R3), S) does not satisfy the complementarity principle. 

UP. S is sufficient, now. Thus the observables A and B satisfying the 
inequality 

(a) Var(A,a).Var(B,a)~h V a ~ S f  ASff 

are unbounded (i.e., their spectra are unbounded) and noncompatible. 1~ 
But they cannot be, as indicated above, complementary. This means that 
there exist two bounded Borel sets E and F of the real line R such that 
O<A(E)/kB(F)< 1, A(E):/= 1, B(F)v~ 1. Let a in S be such that a(A(E) 
/kB(F)) ffi 1. In this state a we have 

(b) Var(A, a). Vat(S, a) < v(E).v(F) 

with the notation t , (E)- -sup{x2:  x~E}- in f{Ix l :xEE} 2. The claims (a) 
and (b) are to hold simultaneously, which means a limitation to the "sizes" 
of the above like bounded sets E and F: 

(ab) p (E) -~ , (F )  >/h 

To conclude: The quantum logic (L(R3),S) may provide a quantum 
description of some physical sy s t em- -a  description in which the superposi- 
tion principle holds, but the complementarity principle does not hold. An 
actual application of the structure (L(R3), S) could be provided, e.g., with 
a description of a spin-1 particle. 

9.2. The Quantum Logic (D,6, fi). We consider now the well-known 
16-element orthomodular lattice D16,11 with a natural state system ft. The 
Hasse diagram of D16 is given in Figure 1. 

I~ denotes the set of those states a in S for which Vat(A, a) exists and is finite. 
llSee, e.g., G-reech/e and Oudder (1973). 
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al~dl -r s 

Fig. 1. The Hasse diagram of the orthomodular lattice D16. 

SP. b and c are two distinct atoms of D16, but there is no atom in D16 
which would be their superposition. Thus the lattice-theoretic superposi- 
tion principle does not hold in DI6. 

D16 admits a great amount of full sets of states on it. For example, D16 
admits a full and sufficient set P of (pure) 0-1 states on it such that the 
natural one-to-one correspondence between the atoms of D16 and the pure 
states of P holds: fix o~ a such that carra a = (x ~DI6: eta(X ) = 1 ) =  a v =  (x E 
Dl6:a <x},  and put aa(x)=O otherwise; similarly for the remaining six 
atoms of D16 (Bugajska and Bugajski, 1973). No pure state in P is a 
superposition of some other pure states in P. This "classical" P is, however, 
easily modified tO a P such that the fullness and the sufficiency as well as 
the above one-to-one correspondence between the elements of P and the 
atoms of D16 is maintained, and that exactly those (corresponding) super- 
positions hold i n /S  which hold in DI6. Evidently, one cannot construct a 
full set of states S on DI6 such that the atoms of DI6 correspond one-to-one 
with the pure states of S, and that the superposition principle holds in S. 

CP. The observables A and G defined through the ranges (0, a, a ~-, 1 ) 
and (0, g, g•  1) with spectra ( )k l , )k2)  , ( /~l '  /~2} are complementary. Thus 
the quantum logic (D16,S), with any full S, satisfies the complementarity 
principle. 

UP. It is most evident that the quantum logic (D16,S), with any 
sufficient S, does not satisfy the uncertainty principle 

To conclude: (D16 , P) may provide a quantum description of some 
physical sys tem--a  description in which the complementarity principle 
holds but the other two principles do not. However, we do not know any 
actual application of the quantum logic in question. 

9.3. The "Photon Polarization" Quantum Logic (L,P). We discuss 
next the "photon polarization" quantum logic (L, P) with L and P defined 
in the natural way as L =  (0, 1, a , ,  a ,  -- a,+,~/2 : 0 < g, < ~ / 2 )  and P -  
(a~, : a,(a,~) = cos(g,-  r L is a nondistributive lattice containing atoms; 



918 Laht i  

in fact each nontrivial element of L is an atom. The set P of pure states on 
L is full and sufficient, and the natural one-to-one correspondence between 
atoms and pure states holds. 

SP. The quantum logic (L,P) satisfies both the lattice-theoretic and 
the state-theoretic formulations of the superposition principle. 

CP. Any two distinct observables with ranges (0, a , ,  a~-, 1} and 
l (0, a . ,  a, v , 1) are complementary, so that (L,P) satisfies the complemen- 

tarity principle. 
UP. In the present case any observable in O is of the form 

A.~ = {0, a~., a~,  1}, sp(A.~)= ( h  a , Xa.I. ) .  Thus in any state a ,  in 
v ,~ ,e n- 2 ~ ~' 2 2 

P Var(A~., a . )  = (X a - Xa§ c o s ( 9  - ~) .sin(xI' - ~)  . Though 
for any a~. in P such that ~ v ~ x I ' ~  ', the 

uncertainty principle does not hold in (L, P). 
To conclude: The quantum logic (L,P) satisfies the superposition 

principle and the complementarity principle, but not the uncertainty prin- 
ciple. Thus, it may provide a quantum description of some physical system. 
In fact, the present quantum logic describes, e.g., the photon polarization 
experiments with different polarization angles ~ and ~(~,#q'mod~r). 
Another application of this type of quantum logic would be a description 
of a spin-1//2 particle in the Stern-Gerlach apparatus. 

9.4. The Quantum Logic (B(M),S,). In Section 3 we recalled the 
classical Hamiltonian description of a physical system with n degrees of 
freedom. For convenience, let n--- 1 now, so that the classical description of 
the system concerned is based on the quantum logic (L, S) with L = B ( R : )  
--the Borel family of the two-dimensional phase space M---R 2 and with S 
as the set of all probability measures on B(R2). The conjugate position and 
momentum observables Q and P are now induced by the (conjugate) 
position and momentum coordinates fq and fp [i.e., Q(E)=fq-I(E) for 
every E in B(R), with fq:R2--->R,(q, p)--~fq(q, p ) = q ;  similarly for fp and 
e]. 

The set S describes, actually, the set of all physically possible state 
preparations. Let us assume that only such state preparations are now 
physically possible which fulfill the requirement of the uncertainty princi- 
ple. So we define 

S h = {a ES:  Var(Q, a) .  Var(P, a) ~(h/4~r) 2} 

The set Sh is a full set of probability measures o n  B ( R 2 ) .  12 Of course, 
S h does not satisfy the principle of plenitude, i.e., it is not sufficient. 

lZThis  is d e m o n s t r a t e d  by  Bugajski  (pr iva te  communica t ion ) .  
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SP. It is clear that the quantum logic (B(R2),Sh) satisfies neither the 
lattice-theoretic nor the state-theoretic formulation of the superposition 
principle. 

CP. For any two bounded Borel sets E and F i n  B(R) Q(E)/kP(F)= 
E• Thus (B(R2),Sh) does not satisfy the complementarity principle. 

UP. The canonically conjugate position and momentum observables 
Q and P satisfy, by the very definition of S h, the uncertainty relation. Thus 
(B(R2),Sh) satisfies the uncertainty principle. 

To conclude. The quantum logic (B(M), Sh) may provide a quantum 
description of some physical sys tem--a  description in which the uncer- 
tainty principle holds, but the other two principles do not. Though it is 
obvious that this kind of description does not provide us, e.g., with a 
correct picture of a hydrogen atom, there is a lesson to be learned from the 
present quantum logic. If the uncertainty principle would be enough to 
take care of the physical fact that h > 0, then the classical phase space 
description implemented with the requirement h >0,  i.e., restricting S to 
S h, should work as the quantum theory. But it does not. The fact that 
(B(RE),Sh) is a quantum description with Boolean proposition system 
(B(R 2) shows that the common claim that "the transition from classical to 
quantum mechanics is to be understood as the transition from a Boolean 
to a non-Boolean possibility structure of events" (Bub, 1979) is not to be 
taken literally. Finally, we note that in the present case the correspondence 
principle receives a natural, and explicit, formulation in the fact that 
limh_,0S h = S  (i.e., S h C_S h, whenever h '<  h). There seems to be no way of 
doing the same with the proposition systems, i.e., the transformation 
non-Boolean Lh-->Boolean L, as h--->0, is not so obvious. In fact, it is 
unknown to us. 

9.5. The Quantum logic (Jls,  P)- Our last example will be the quan- 
tum logic (Jls,P) with ,/18 as the 18-element orthoposet and with P as a full 
and sufficient set of pure states on J18- Jls is the first known orthomod- 
ularposet which is not a lattice (Janowitz, 1963; see also Greechie, 1969). 
Again, one can choose P such that the natural one-to-one correspondence 
between the atoms of -/18 and the elements of P holds, and that exactly 
those superpositions hold in P which hold in Jls. 

SP. (JIs,P) satisfies neither the lattice-theoretic nor the state-theoretic 
formulations of the superposition principle. 

CP. (Jls,P) does not satisfy the complementarity principle. 
UP. (JIB,P) does not satisfy the uncertainty principle. 
To conclude. The quantum logic (J~s,P) does not provide a quantum 

description of any physical system--none of the three quantum principles 
holds in (J~s,P). Moreover, it is evident that this quantum logic cannot 
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provide a classical description of any physical system. Thus (Jls,P), being 
in E\(~r U Equ), seems to have no relevance to physics. Thus, e.g., the 
lattice assumption of L cannot be questioned by referring to Jls which is 
not a lattice. We now also appreciate that the common claim "L is not 
distributive and therefore corresponds to a quantum system" (Greechie 
and Gudder, 1973) cannot be taken literally. 

9.6. Some Remarks on ~mm and EvN- In Section 7 we made the 
distinction between the Dirac-Heisenberg-Bohr quantum logics and the 
von Neumann quantum logics, referring to the fact that any Hilbertian 
quantum logic is a Dirac-Heisenberg-Bohr quantum logic, but not con- 
versely. 

The Hilbert space quantum theory is built up in such a way that it is 
automatically in harmony with the three important quantum principles. 
This means that EvN C--~DHB" In Bugajski and Lahti (1980) it is demon- 
strated that the horizontal sum of any two Hilbertian quantum logics is a 
DHB quantum logic but not a vN quantum logic, establishing the above- 
stated fact. 

10. DISCUSSION 

In the preceding sections we defined the following subsystems of the 
set E of all quantum logics (L,S): Eel, EsP, EuP, EcP, Equ, Er)HB, and EvN. 
We shall now summarize the most important properties of these sets and 
discuss their mutual connections. We denote by E~ the set theoretic 
complement of ~ in E, i.e., E ~ = E \ s  for any a = c l ,  SP, UP, 
CP, qu, DHB, vN. 

We have 

E~• n E~• ~ foranya, fl=SP, CP, UP, a~fl (10) 

where the brackets indicate that the sign / may or may not occur. Our 
system of 12 set-theoretic equations (10) reveals the complete logical 
independence of our notions of SP, CP, and UP. In particular, the 
equations of the form E~cqE~ ~ (a~fl) express the statements that 
these notions are not logical consequences of each others. Moreover, the 
equations E~ N Ea veO indicate that our formulations of SP, CP, and UP do 
not contradict each others. 

We also have 

~4= EvN C ErmB C E,~ C ~q~ C Er Eel C E~ ( a =  SP, CP, UP) (11) 
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with all set inclusions being proper. First of all, these relations indicate that 
our formulations of the three principles SP, CP, and UP are of quantal 
nature, each of them excluding classical descriptions. This guarantees the 
consistency of the proposed quantizations. Moreover, in the mutual ex- 
clusiveness of the sets ~d and ~qu we can read the mutual exclusiveness of 
the two possibilities: either h = 0  or h>0.  Confronting the fact that 
EvN C~DHB with the assumption that the SP, CP, and UP jointly exhaust 
the quantum principle we realize that the restriction of ~ to Ez~B expresses 
the proper (or full)  quantization of the abstract (L, S) theory. This indicates 
also that the structure of the proper quantum theory is coded in the set 
EDna, whereas the further restriction of E to EvN is just a mathematically 
convenient restriction of the proper quantum theory EDrtB- 

Finally, we recall that 

(~cl U ~qu) 3- ~=~ (12) 

indicating the abundance of the descriptions (L,S) resulting from the 
general considerations. We leave it open whether some prestructures (L, S) 
in (~cl t3 Equ)" may lead to some physically interesting generalizations of 
the standard classical and quantal theories. 

We may now summarize our considerations as follows. 
Quantum theory is the theory of quanta. Whenever one wants to have 

a quantum theory from a given physical theory the universal quantum of 
action should be incorporated, either explicitly or implicitly, into that 
theory; i.e., the theory should be quantized. Within the quantum logic 
approach to axiomatic quantum mechanics a natural way to do that is to 
introduce the superposition principle, the uncertainty principle, and the 
complementarity principle into the framework. This leads to a natural 
characterization of those quantum logics (L, S) which may provide quan- 
tum descriptions of some physical systems. Assuming that the three quan- 
tum principles exhaust the fundamental quantum principle, the existence 
of the universal quantum of action h, we end with singling out those 
quantum logics which may provide proper quantum descriptions. The 
given characterization of quantum logics, though not complete, adds also 
to our understanding of the conceptual foundations of the traditional 
quantum theory. 
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